to.. ELA Web Portal to.. ELA Notes

ASCIIMathML codes for math expressions
in HTML using MathJax

Note: if using Internet Explorer you may have to click on "Allow Blocked Content" to view mathematical characters, depending on your security settings.

Instructions | Notation List & Table | Sample Equations

^ Contents ^

Simplified Instructions for calling MathJax remotely

To use MathJax in order to permit ASCIIMathML coded math symbols, enter the following within the <head> </head> tags of your web page...

<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=AM_HTMLorMML-full">
</script>

Alternatively, you can download the MathJax application and call it locally after installation on your hard drive or your server.


^ Contents ^

Mathematical Notation List & Table

Greek letters (capitals are restricted to a few symbols):
alpha `alpha`, beta `beta`, chi `chi`, delta `delta`, epsilon `epsilon`, varepsilon `varepsilon`, eta `eta`, gamma `gamma`, iota `iota`, kappa `kappa`, lambda `lambda`, mu `mu`, nu `nu`, omega `omega`, phi `phi`, varphi `varphi`, pi `pi`, psi `psi`, rho `rho`, sigma `sigma`, tau `tau`, theta `theta`, vartheta `vartheta`, upsilon `upsilon`, xi `xi`, zeta `zeta`

Delta `Delta`, Gamma `Gamma`, Lambda `Lambda`, Omega `Omega`, Phi `Phi`, Pi `Pi`, Psi `Psi`, Sigma `Sigma`, Theta `Theta`, Xi `Xi`

Note: with respect to the following table, see also Wikipedia's “ List of mathematical symbols” for additional meanings.

Sample ASCIIMathML Notation Coding Table
To see this Enter this without backslashes Description
`+, -, xx, -:` \`+, -, xx, -:\` Addition, subtraction, multiplication, division symbols
`=, !=, ~=, ~~, -=` \`=, !=, ~=, ~~, -=\` Equal, not equal, approx equal, approx equal, defined as
`<, <=, >, >=` \`<, <=, >, >=\` Less than, less than or equal, greater than, greater than or equal
`O/` \`O/\` Null or empty set
`AA, EE, EE!, !EE` \`AA, EE, EE!, !EE\` For all (any, each), exists, exists exactly one, not exist
`in, !in` \`in, !in\` Is element of, not element of
`sube, sub` `\sube, sub\` Is subset of (is contained in), proper subset
`supe, sup` '\supe, sup`\ Is superset of (includes), proper superset
`rArr, lArr, hArr` '\rArr, lArr, hArr`\ Implication arrows
`larr, rarr, uarr, darr` '\larr, rarr, uarr, darr`\ Left, right, up, down arrows
` NN, ZZ, QQ, RR, CC` \`NN, ZZ, QQ, RR, CC\` Natural, Integers, Rational, Real & Complex Numbers
`oo` \`oo\` infinity symbol using double, lower case letter o
`hat x, bar x, ul x, vec x` \`hat x, bar x, ul x, vec x\` Hat, bar, underline, & vector x's
`x/x={(1,if x!=0),(text{undefined},if x=0):}` \`x/x={(1,if x!=0),(text{undefined},if x=0):}\` piecewise defined functions are based on matrix notation
`dot x or dx/dt, ddot x or (d^2x)/dt^2` \`dot x or dx/dt, ddot x or (d^2x)/dt^2\` Dot or dx (derivative), and double (derivative) dot x's
`d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h` \`d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h\` complex subscripts are bracketed, displayed under lim
`int, oint, del, grad` \`int, oint, del, grad\` Integral, closed (or contour) integral, partial, gradient (divergence, or curl)
`int_0^1f(x)dx` \`int_0^1f(x)dx\` subscripts must come before superscripts
`sum, prod, Π` \`sum, prod, &Pi;\` sum, product symbols & pi as product symbol
`f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n` \`f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n\` f^((n))(a) must be bracketed, else the numerator is only `a`
`[(1,2,3),(4,5,6),(7,8,9)]` \`[(1,2,3),(4,5,6),(7,8,9)]\` matrix
`[[a,b],[c,d]]((n),(k))` \`[[a,b],[c,d]]((n),(k))\` matrices and column vectors
`|cdots|, vdots, ddots` \`|cdots|, vdots, ddots\` horizontal, vertical & diagonal dots
`x^2+y_1+z_12^34` \`x^2+y_1+z_12^34\` subscripts as in TeX, but numbers are treated as a unit
`sin^-1(x)` \`sin^-1(x)\` function names are treated as constants
`a//b` \`a//b\` use // for inline fractions
`(a/b)/(c/d)` \`(a/b)/(c/d)\` with brackets, multiple fraction work as expected
`a/b/c/d` \`a/b/c/d\` without brackets the parser chooses this particular expression
`((a*b))/c` \`((a*b))/c\` only one level of brackets is removed; * gives standard product
`sqrt sqrt root3x` \`sqrt sqrt root3x\` spaces are optional, only serve to split strings that should not match
`<< a,b >> and {:(x,y),(u,v):}` \`<< a,b >> and {:(x,y),(u,v):}\` angle brackets and invisible brackets
`(a,b]={x in RR | a < x <= b}` \`(a,b]={x in RR | a < x <= b}\` grouping brackets don't have to match
`abc-123.45^-1.1` \`abc-123.45^-1.1\` non-tokens are split into single characters,
but decimal numbers are parsed with possible sign
`hat(ab) bar(xy) ulA vec v dotx ddot y` \`hat(ab) bar(xy) ulA vec v dotx ddot y\` accents can be used on any expression (work well in IE)
`bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB)` \`bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB)\` font commands; can use any brackets around argument
`stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)` \`stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)\` symbols can be stacked
`{::}_(\ 92)^238U` \`{::}_(\ 92)^238U\` prescripts simulated by subsuperscripts

^ Contents ^

Samples of Mathematical Notation

Uncertainty Principle: `ΔxΔp ≥ h/(4π)` where `Δx` is position uncertainty (or standard deviation), `Δp` is momentum uncertainty, and `h` is the reduced Plank constant.

Rydberg Formula for Hydrogen spectra frequencies/wavelengths: `f/c = 1/lambda = R_ooxx(1/n^2-1/m^2)` where `f` is the frequency, `c` is the speed of light, `lambda` is the wavelength, `R_oo` is the Rydberg constant (`~~1.097 * 10^7 m^-1`), and `m, n` are positive integers. Note that `R_oo=(m_e*e^4)/(8epsilon_0^2h^3c)`, where `m_e` is the electron rest mass, e its charge (i.e., the elementary charge), and `epsilon_0` the vacuum permittivity.
Electron Orbital Energy: since, from the defintion of Plank's constant, `E=hf`, we have `E_n = -hcR_oo(1/n^2)`

Solving the quadratic equation:
Suppose `a x^2+b x+c=0 and a!=0`. First divide by `\a` to get `x^2+b/a x+c/a=0`.
Next complete the square and obtain `x^2+b/a x+(b/(2a))^2-(b/(2a))^2+c/a=0`.
The first three terms factor to give `(x+b/(2a))^2=(b^2)/(4a^2)-c/a`.
Taking square roots on both sides, we arrive at `x+b/(2a)=+-sqrt(((b^2)/(4a^2)-c/a))`.
Finally, subtract `b/(2a)` from both sides and simplify to get the two solutions: `x_(1,2)=(-b+-sqrt(b^2 - 4a c))/(2a)`.